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Abstract 1. Introduction 

A method of deriving d-dimensional crystallographic 
colour lattices with no symmetry conditions on the 
basis vectors is given. A number of nonequivalent 
n-colour lattices is evaluated for d _< 4 and any finite n. 
An application of colour lattices for obtaining spin 
translation groups is presented. The results for triclinic 
spin translation groups are compared with those of 
Litvin [Acta Cryst. (1973), A29, 651-660]. 
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Colour groups in crystallography are defined as 
extensions of classical crystallographic groups. The 
idea started in the works of Below & Tarkhova (1956), 
Indenbom (1959), Niggli (1959) and others (see also 
Shubnikov & Koptsik, 1974). Colour groups are of 
interest in the theory of magnetic crystals, alloys, defect 
crystals, etc. Magnetic groups have been interpreted in 
terms of two-colour groups. The generalized magnetic 
groups called spin groups have been recently intro- 
duced in the form of many-coloured groups. 

Different types of colour groups, their properties and 
bibliography have been reviewed by Shubnikov & 
Koptsik (1974) and Opechowski (1977). Only P-type 
colour groups will be considered here. Colour point 
groups have been derived by Koptsik & Kotsev 
(1974a) and Harker (1976). Zamorzaev (1969), 

© 1981 International Union of Crystallography 



18 C O L O U R  L A T T I C E S  A N D  S P I N  T R A N S L A T I O N  G R O U P S  

Zamorzaev, Galarskii & Palistrant (1978) and 
Shubnikov & Koptsik (1974) have listed 2-, 3-, 4- and 
6-colour three-dimensional lattices. Only very limited 
classes of colour space groups are known (Zamorzaev, 
1969; Koptsik & Kuzhukeev, 1972). Harker (1978a) 
has recently proposed a method of deriving colour 
lattices with symmetry conditions on the basis vectors. 
He has also listed triclinic colour lattices for n < 16. 

In this paper an algebraic method of deriving the 
colour d-dimensional lattices in a general case is 
presented, i.e. no symmetry conditions are imposed on 
the basis vectors of a lattice. The exact formulas for a 
number of non-equivalent n-colour lattices are given for 
d 5 4 and any finite n. The results are used for deriving 
spin translation groups in the triclinic system. Pre- 
liminary definitions and basic properties of colour 
groups are briefly presented in § 2. In § 3, after 
formulation of four group-theoretical lemmas, we 
develop a method of obtaining n-colour lattices; the 
main result is given here. The spin translation groups 
(STG's) are derived and tabulated in § 4. The examples 
in Table 1 show the distribution of STG's over their 
isomorphic colour images of lowest n. In Table 2 the 
symbols of nonequivalent classes of triclinic STG's are 

Table 1. Examples of colour lattices (CL) and spin 
translation groups ( STG) isomorphic to them 

n CL 
l {I l l  
2 {211 
3 {311 
4 {411 

{221 
5 {511 
6 {611 
7 {711 
8 {811 

{421 
{222 

36 {36,1, 
{ 18,2, 
I12,3, 

{661 

STG 
( l l l )  

(211), (2'I 1), (1'11) 
(311) 

(411), (4'11) 
(21'1), (2xEy 1), (2"2y 1) 

(511) 
(611), (6'1 I), (3'11) 

(711) 
(811), (8'11) 

(41'1) 
(2x2y 1') 

(36,1,1), (36', 1,1) 
(18,1',1) 

Table 2. Spin translation groups of the triclinic system 

(N1 I) (ZNI')* (ZtZ2N) 
(N'I 1) (Z'tZ2N) 
(NI' 1)* (ZNI) (Z'tZ'~N) 

(Z'NI)  
(2x2yl) (ZN' 1) (Z,Z2N') 
(2"2yl) (Z'N' 1) (Z'~Z2N') 
(2xZyl') ( Z',Z'2N' ) 

(ZIZ2Z 3) 
(Z~Z2Z3) 
(z~z~z~) 
(z~z~z~) 

* N even. 

given. A specific discussion on the change of basis 
vectors of a colour lattice is given in the Appendix.* 

2. Colour groups 

For a given group G and a discrete set of points R = 
{ r l, r2,... } consider an orbit Q in R relative to G" 

O = Gr I = {r21r 2 =girl ,  gt E G}. 

Let f ( r )  be an arbitrary function defined on Gr I. Any 
value f / o f  function f ( r )  is called a colour. An ordered 
pair [f(ri),rtl  is a colourpoint. Let F = {fi} be a set of 
all n distinct values of a function f ( r )  and P = { Pk} a 
transitive group on F. In particular, P can be thought of 
as any subgroup of the group S, of all permutations of 
colour fl" 

We consider ordered pairs (Pk,gt), where Pk E P and 
gt E G, and define their action on colour points [f~,rj]. 
We assume that elements of P act independently 
relative to elements of G" 

(Pk,gi)[ f / , r j  ] = [ Pk fl, gi rj ] = [fq,rs];  

ft, fo E F; rj, rs E O. 

Any subgroup of group G(P)= P ® G, where ® denotes 
direct product of groups, is a colour group (P-type 
colour group) (van der Waerden & Burckhardt, 1961; 
Zamorzaev, 1967). We are interested in those sub- 
groups GtP) of P ® G which are isomorphic to G: 

G ~_ G (p)~ _ P ® G. 

The subgroups G (p) are nontrivial colour groups. The 
set of classical elements (e,gi); e E P, g~ E G forms a 
subgroup H (l) of a colour group. The symmetry group 
of a system of colour points K is the colour group 
leaving K invariant. A system of colour points with the 
nontrivial colour group as the symmetry group has 
select 'colour properties'. In particular: (i) a function 
f ( r )  is single-valued, i.e. only one colour fi  is paired 
with each point ri; (ii) the number of colour points 
[ft, rt] for each colour ft  of F is the same; they are equal 
to the order of the classical subgroup H (1) of G (P) 

Only nontrivial colour groups G (P) are discussed in 
the following sections. 

The method of deriving all subgroups G (P) of P ® G is 
based on the 'isomorphism theorem' of Zamorzaev 
(1967). 

A set of all elements Pi of P in a nontrivial group G (P) 
constitutes a group P isomorphic to a factor group G/H. 
The elements Pl of P are paired with elements gk of G by 
the homomorphism 

G --, G/H _~ P. 

*Deposited with the British Library Lending Division as 
Supplementary Publication No. SUP 35439 (4 pp.). Copies may be 
obtained through The Executive Secretary, International Union of 
Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 
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Two colour groups G (P) and G (p) are equivalent if they 
are conjugate subgroups of a group .O = {a~}: 

G(P) = (~i G(P)ai -1, a i E ,.(2 (1) 

and 

H m = a  i H(l)a~ -' (2) 

where H (1) is the maximal subgroup of G (P) and G (P). In 
the following, only crystallographic groups are taken as 
groups G and the equivalence of colour groups is 
determined by a group 

.Q= P ® A  + (3) 

where P is either an abstract or a concrete group of 
transformations; A + is the proper subgroup of the affine 
group A. 

3.  C o l o u r  l a t t i c e s  

Let G be a d-dimensional crystallographic lattice 
denoted by T: 

{ ' / T =  t ; t =  ~ n l a  l, n~ integers 
l = l  

where a~, a2 . . . .  , a d are d linearly independent vectors in 
d-dimensional Euclidean space. Vectors a 1, a z . . . . .  a a 
form a basis of T. We assume that no symmetry 
conditions are imposed on the basis vectors, i.e. any set 
of d linearly independent vectors of T stands for the 
basis of T. The colour lattice T (p) isomorphic to T is the 
genera l  colour lattice. The  lattice T is an Abelian group 
and can be expressed as a direct product of d 
one-dimensional lattices: 

T = T I ® T E @ . . . @ T  u 

where all T l (i = 1, 2 . . . .  , d) are infinite cyclic groups. 
We now formulate four group-theoretical lemmas 
which are standard statements in the theory of Abelian 
groups (Fuchs, 1971). 

L e m m a  1. Let a lattice T* be a d-dimensional 
subgroup of T. Then there exist bases a 1, a 2, ..., a d of 
the group T and b~,b2 , . . . ,b  a of the group T*, 
respectively, such that 

b I = m I a I ( 4 )  

where all mt are integers. 
L e m m a  2. If 

G "-,_AI ® A2 ® . . .  ® A ! 

and A~' is an invariant subgroup of A t, i = 1, 2 . . . .  , I, 
then for some subgroup H of G, 

H ~_A* ® A ~ ' ® . . . ® A ~ '  

and 

G/H ~_ (AI/A~') ® (A2/A*) ® . . .  ® (At/A~). 

L e m m a  3. Every finite Abelian group G is a direct 
product of groups 

G = GI ® G2 ® ' " ®  Gk (5) 

where each G t is .cyclic of  prime power order p~/', 2~ > 0. 
The orders pi a' are invar iants  and the groups are p r i m e  
componen t s  of the decomposition (5). 

Two finite Abelian groups are isomorphic if  and only 
if they have the same set of elementary divisors. 

L e m m a  4. A direct product 

H 1 ® HE ® " "  ® Hq (6) 

of cyclic groups, whose orders are powers of distinct 
primes, is cyclic. 

A method of constructing general colour lattices T (p) 
for a given lattice T is based on the following theorem: 

Theorem 1. 

where 

and 

T(P)= T~P,) ® T~P,)® ... ® Ta ~P,) (7) 

TIp') ___ T i (i = 1, 2 . . . .  , d) 

P = PI ® P2 ® " "  ® Pd (8) 

where each Pi is a cyclic group of order m i, l-]a= tm i = n. 
The lattice T~ P,) (i = 1, 2, . . . ,  d) is the group formed by 
all powers of (p~, ai) where p~ is a generating element of 
Pi, ai is a basis vector ofT v 

This result follows immediately from the 
isomorphism theorem, lemma 1 and lemma 2. Since T is 
Abelian, any subgroup T* of T is normal. The factor 
group T/T* must exist and is also Abelian. Thus the 
group P of T (P) is an Abelian group. In the one- 
dimensional case, group Tt/T* is a cyclic group of order 
m i, as is the group Pv 

Thus, to derive all colour lattices T (P) for a given 
lattice T and number n, it is only necessary to find all 
nonisomorphic Abelian groups P of order n expressed 
as all possible decompositions (8). We use now lemma 
3. In the decomposition (5) of the group G, let the cyclic 
groups be related to the distinct primes p~, P2 . . . .  , Pk" 
Let the number of prime components related to a prime 
pi (i = 1, 2, ...,  k) be equal to q~ and the prime 
components of order 

/~t ' , /~ '  . . . .  , p~t q, (9) 

where the numbers 2 are arranged as follows: 

21 > 2 2 > ... > 2q,; (10) 

y 2 j = r i ;  j = 1 , 2  . . . .  ,qi ;  i = 1 , 2  . . . .  ,k.  
J 

In this way, one obtains from lemma 3 all noniso- 
n r l  rlr2 morphic Abelian groups of given order n = e.l y2. . .P[ '  

by considering all partitions (10) of numbers r t (i = 1, 
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2, ..., k) with arbitrary numbers qr Here we are 
interested in the decomposition of an Abelian group of 
order n into d cyclic components with admitted trivial 
components, i.e. cyclic groups of order 1. It is clear 
from lemma 3, lemma 4 and (10) that such 
decompositions can be found, if the numbers qi are less 
than d. 

A partition of r as a sum of a maximum of d positive 
integers is called a d-ary partition. The number of d-ary 
partitions of r will be denoted by 7(r). All possible 
decompositions (8) can then be expressed by all d-ary 
partitions of numbers rg. The numbers 7(r) can be 
calculated as a coefficient of x ~ in the formal power- 
series expansion of 

~ ( X )  = H (1 - - X J )  - I E  7(r) x ,  
j= l  r=O 

where q~(x) is the Euler generating function (Hall, 
1969). Thus, we have the following final result: 

T h e o r e m  2. The number of n-colour d-dimensional 
lattices for 

n = p[' p~' . . ,  p~" (11) 

where all numbers Pt are distinct primes, is equal to 

7(r,) 7(r2) ... ?(rg) (12) 

where 7(rg) is expressed as: 

E{1-~(r  i + 7)2(r/+ 1) + ~} for d = 4 and rg odd; 

E{-i-}4[( q + 5) 3 -  3(r  i - 7)1} for d = 4 and r i even; 

E{-~( r  i + 3) 2 + ¼} for d =  3; 

E { ( r J 2 ) +  1}for d =  2; 1 f o r d =  1. (13) 

Here E{ x } denotes the integer part of x; i = 1, 2, ..., I. 
A colour lattice T {p) will be represented by the basis 

vectors a~, a 2 . . . .  , a d, each vector being paired with an 
appropriate generating(p,) (p,)elementIp,) p / o f  Pi (i = 1, 2 . . . . .  d)., 
The symbols {a~ , a 2 . . . . .  a a } or simply {m~, m 2 . . . .  
m d } where m i is the order of P~ are used for denoting the 
T {P). The number mg is an order  of the vector a~ since 
[ a l P , ) ]  m' : b! D where b i : m iag is a classical vector of 

The method of constructing all colour d-dimensional 
lattices for a given number of colours n is as follows. 

We start with the decomposition (11) of n and find 
all d-ary partitions of numbers r~, i = 1, 2 . . . . .  l. Every 
set of the numbers 

p aj; j =  1,2 . . . . .  l; 1 < _ j < d  (14) 

determines the decomposition of the group P into cyclic 
components. For every set of order (14) the relatively 
prime components are multiplied according to lemma 4. 
It can be shown that the orders thus obtained mg of 
cyclic groups Pg have the property that mg+ ~ divides m;, 
1 < i < s - 1. We may use this property to establish the 
associated cyclic groups with the basis vectors a~, a 2, 

.... a s where s < d. If s < d, then with vectors ai+l, 
aj+ 2, ..., a a there are associated cyclic groups of order 
1. 

For example, we see that there are two non- 
equivalent 4-coloured triclinic lattices {a]4), ~(~) or')} ~2 ' ~3 
and {a] 2~, a~2 z), a~ 2) } but only one 6-coloured triclinic 
lattice {~,(6) o~l) -1 ,--2 ,a~ D}. Further examples of colour 
lattices of lowest n and d = 3 are given in Table 1. 

It is pointed out that the numbers mg in (4) of lemma 
I need not be finite. It follows that the groups Pi are 
infinite cyclic groups. In general, the invariants of an 
Abelian group are prime powers and oo. We use this 
fact in the next section. 

4. Spin translation groups 

Spin groups are examples of colour groups of 
physical importance. In this interpretation, the function 
f ( r )  denotes a spin density function S(r) describing the 
distribution of magnetic moments in a magnetically 
ordered crystal. The function S(r) is an axial vector 
function defined on the set Gr~ which forms a crystal. 
The symmetry group G-~ of such a system is a sub- 
group of group 

(3s= P®G (15) 

where P = 0 ® 1' is the group of all rotations and axial 
inversion in 'spin space' and G is the crystallographic 
group acting on the vectors in 'physical space'. The 
group G s is called a spin group (Naish, 1963; for a 
review see Litvin & Opechowski, 1974). We are 
interested in spin groups isomorphic to G. 

The problem of deriving spin groups is simplified if 
the appropriate abstract colour group is known. For a 
given colour group G (P~ one needs only its isomorphic 
spin images G~ s°, G~S° , . . .  where S l, S 2 are subgroups 
ofO ® 1~. 

The nonequivalent groups among GI s,), G~ s2~, ... are 
found by using (1)-(3) where P -- O ® 1'. As an 
illustration, we derive the STG's with no symmetry 
conditions on the basis vectors. STG's were first 
tabulated by Litvin (1973). Assume G to be a lattice T 
generated by basis vectors ag, i = 1, 2 . . . . .  d. We find 
the Abelian subgroups of 0 ® 1' which are point 
groups of three categories: 

(1) 1 , 2 , 3 , 4  . . . . .  oo; 
(2) 1 ' , 2 ' , 2 ®  1 ' , 3 ®  1 ' , 4 ' , 4 ®  1', .... oo® 1'; 

(3) 222, 2 '2 '2,  222 ® 1' (16) 

Thus, a STG is generated by vectors ag and proper and 
improper rotations Rg = R(a/), i -- 1, 2 . . . . .  d. For a 
given colour lattice T IPI we then find all spin lattices T(~ s,~, 
T~ s,~ . . . .  and divide them into equivalent classes. The 
method is illustrated by a few examples (Table 1). In 
Table 2, representative STG's of nonequivalent classes 
of STG's of the triclinic system are given. A STG is 
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denoted by (RI,R2,R3). The symbol N denotes a 
rotation R i through an angle 2rcq/N, where N and q are 
relatively prime integers and q < N. The rotations 
27cq/N are generators of a cyclic group of order N. A 
rotation R,. through the angle 2re~Z, where Z is an 
irrational number, is denoted by Z. The rotation Z is a 
generator of a cyclic group of infinite order. Symbols 
N'  and Z '  are used for denoting generators of groups of 
the second category (16) in the case of both even and 
odd N. In the symbol (RI ,Rz,R 3) all R i denote 
rotations about a single arbitrarily oriented axis, despite 
rotations belonging to groups of the third category (16). 
For these groups, subscripts have been added in Table 
2 to indicate the mutual orientations of the two-fold 
axes. 

The results presented in Table 2 differ from Litvin's 
(1973) results given in Table 1 of his work as the 
equivalent classes of STG's are omitted here. For 
example, the STG denoted by (N 1, N2, N3), where 
corresponding N's  are relatively prime, can be found in 
the class of STG's denoted by (N,I ,1)  where N -- 
N I N 2 N  3. Similarly for the groups (NI,N2,2) and 
(N,2,1) where N~,N:,N are odd integers. The discussion 
of the problem based on very simple number-theoretic 
considerations is given in the Appendix.* 

In conclusion, we make two remarks. (i) We can see 
from the example in Table 1 that all colour lattices do 
not have a spin interpretation; this is not the case with 
two-colour and magnetic groups. (ii) Another physical 
interpretation of colour groups follows by considering 
the direct-product extension of group P in (15) by group 
i, which causes inversion of the polar vector; one thus 
arrives at the so-called magnetoelectric groups (Koptsik 
& Kotsev, 1974b). 

I would like to thank Professor V. A. Koptsik for 
many discussions. 

Note added posthumously: A paper by D. Harker  
(1978b) that appeared after receipt of the present paper 

* See deposition footnote. 

presents similar results based on a geometric-algebraic 
argument. (Note added by Professor A. Oles.) 
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